Deret Aritmatika

2 + 4 + 6 + 8 + 10 + .... + 50 =
jika kita menjumlah bilangan tersebut secara manual, tentu akan sangat lama. Itu baru sampai 50, kalau sampai 100?
Tapi kalau seperti berikut...
2   + 4   +  6  +  8  + ... + 44 + 46 + 48 + 50
50 + 48 + 46 + 44 + ... +  8  +  6  +  4  +  2   +
52 + 52 + 52 + 52 + ... + 52 + 52 + 52 + 52
               sebanyak 25
maka 52 x 25 = 1300
mudah, bukan?
maka kesimpulannya adalah

Sn = 1/2 x ( a + Un)

dengan:
Sn = jumlah suku n
a   = bilangan awal
Un = bilangan akhir

Un = a + (n-1) x b

dengan:
a = bilangan awal
b = beda
   = U2-U1

contoh soal:
1.  Suku ke-4 dan suku ke-9 suatu barisan aritmatika berturut-turut adalah 110 dan 150. Suku ke-30 barisan tersebut adalah ...
A. 308
B. 318
C. 326
D. 344
E. 354
Pembahasan
Dari beberapa suku yang diketahui diperoleh persamaan yaitu :
(1) U4 = a + 3b = 110
(2) U9 = a + 8b = 150

Dengan dua persamaan di atas, kita dapat menentukan nilai suku pertama (a) dan beda (b) barisan aritmatika tersebut. Nilai a dan b dapat ditentukan dengan metode eliminasi ataupun metode substitusi. Dengan metode substitusi, diperoleh :
a + 3b = 110 → a = 110 - 3b → substitusi ke persamaan (2).
a + 8b = 150
⇒ 110 - 3b + 8b = 150
⇒ 110 + 5b = 150
⇒ 5b = 40
⇒ b = 8
Karena b = 8, maka a = 110 - 3(8) = 110 - 24 = 86.
Jadi, suku ke-30 barisan aritmatika tersebut adalah :
U30 = a + 29b
⇒ U30 = 86 + 29(8)
⇒ U30 = 86 + 232
⇒ U30 = 318 (Opsi B)

2.  Dari suatu barisan aritmatika diketahui suku ke-5 adalah 22 dan suku ke-12 adalah 57. Suku ke-15 barisan ini adalah ...
A. 62
B. 68
C. 72
D. 74
E. 76
Pembahasan 
Dari soal diperoleh dua persamaan sebagai berikut :
(1) U5 = a + 4b = 22
(2) U12 = a + 11b = 57

Dengan menggunakan metode substitusi, diperoleh nilai suku pertama dan beda sebagai berikut :
a + 4b = 22 → a = 22 - 4b → substitusi ke persamaan (2).
a + 11b = 57
⇒ 22 - 4b +11b = 57
⇒ 22 + 7b = 57
⇒ 7b = 35
⇒ b = 5
Karena b = 5, maka a = 22 - 4(5) = 22 - 20 = 2.
Jadi, suku ke-15 barisan aritmatika tersebut adalah :
U15 = a + 14b
⇒ U15 = 2 + 14(5)
⇒ U15 = 2 + 70
⇒ U15 = 72 (Opsi C)

3.  Suku keempat dan suku ketujuh suatu barisan aritmatika berturut-turut adalah 17 dan 29. Suku barisan ke-25 adalah ...
A. 97
B. 101
C. 105
D. 109
E. 113
Pembahasan 
Dari soal diperoleh dua persamaan sebagai berikut :
(1) U4 = a + 3b = 17
(2) U7 = a + 6b = 29

Dengan menggunakan metode substitusi, diperoleh nilai suku pertama dan beda sebagai berikut :
a + 3b = 17 → a = 17 - 3b → substitusi ke persamaan (2).
a + 6b = 29
⇒ 17 - 3b + 6b = 29
⇒ 17 + 3b = 29
⇒ 3b = 12
⇒ b = 4
Karena b = 4, maka a = 17 - 3(4) = 17 - 12 = 5.
Jadi, suku ke-25 barisan aritmatika tersebut adalah :
U25 = a + 24b
⇒ U25 = 5 + 24(4)
⇒ U25 = 5 + 96
⇒ U25 = 101 (Opsi B)

4.  Suku kedua barisan aritmatika adalah 5 dan suku kelima adalah 14. Suku ke-20 barisan aritmatika tersebut adalah ...
A. 59
B. 62
C. 63
D. 65
E. 68
Pembahasan 
Dari soal diperoleh dua persamaan sebagai berikut :
(1) U2 = a + b = 5
(2) U5 = a + 4b = 14

Dengan menggunakan metode substitusi, diperoleh nilai suku pertama dan beda sebagai berikut :
a + b = 5 → a = 5 - b → substitusi ke persamaan (2).
a + 4b = 14
⇒ 5 - b + 4b = 14
⇒ 5 + 3b = 14
⇒ 3b = 9
⇒ b = 3
Karena b = 3, maka a = 5 - 3 = 2.
Jadi, suku ke-20 barisan aritmatika tersebut adalah :
U20 = a + 19b
⇒ U20 = 2 + 19(3)
⇒ U20 = 2 + 57
⇒ U20 = 59 (Opsi A)

5.  Dari suatu barisan aritmatika diketahui suku keempat adalah 7 dan jumlah suku keenam dan kedelapan adalah 23. Besar suku kedua puluh adalah ...
A. 21
B. 20
C. 31
D. 41
E. 60
Pembahasan 
Dari soal diperoleh dua persamaan sebagai berikut :
(1) U4 = a + 3b = 7
(2) U6 + U8 = (a + 5b) + (a + 7b) = 2a + 12b = 23

Dengan menggunakan metode substitusi, diperoleh nilai suku pertama dan beda sebagai berikut :
a + 3b = 7 → a = 7 - 3b → substitusi ke persamaan (2).
2a + 12b = 23
⇒ 2(7 - 3b) + 12b = 23
⇒ 14 - 6b + 12b = 23
⇒ 6b = 9
⇒ b = 9/6 = 3/2

Karena b = 3/2, maka a = 7 - 3(3/2) = (14 - 9)/2 = 5/2.
Jadi, suku ke-20 barisan aritmatika tersebut adalah :
U20 = a + 19b
⇒ U20 = 5/2 + 19(3/2)
⇒ U20 = 5/2 + 57/2
⇒ U20 = 62/2 = 31 (Opsi C)

sekian dari saya, semoga bermanfaat.

0 komentar:

Posting Komentar